Algebra I : B.Sury B.Math. (Hons.) Ist year Ist semestral examination 2005

Q 1.

(a) In a group G, suppose g is an element of order 143. Prove that there are uniquely defined elements $g_1, g_2 \in G$ with the properties

$$g = g_1 g_2 = g_2 g_1$$
, $O(g_1) = 11, O(g_2) = 13.$

(b) If N is a normal subgroup of a group G and $xy \in N$ for some $x, y \in G$, then show that $x^n y^n \in N$ for all natural numbers n.

Q 2.

Let $\theta: G \to G$ be an automorphism of a finite group G satisfying $\theta(g) = g$ if, and only if, g = e. Prove that every element of G must be of the form $x^{-1}\theta(x)$ for some $x \in G$. Further, if θ has order 2, show that $\theta(x) = x^{-1}$ for all x and that G is abelian.

Q 3.

Using Sylow's theorems or otherwise, prove that a group of order 33 must be cyclic.

Q 4.

Let G be a finite simple group and suppose n and O(G) are relatively prime. Prove that each element of G is a product of n-th powers of elements of G.

Q 5.

Let G be a finite group and N be a normal subgroup such that O(N) and O(G/N) are relatively prime. If H is any subgroup of G such that O(H) divides O(N), show that H must be contained in N.

Q 6.

In a commutative ring with identity, prove that any maximal ideal is prime. Is this result true for the ring $2\mathbf{Z}$ of even integers ? Why ?

Q 7.

If f_1, f_2, \dots, f_n are in the ring $C([0, 1], \mathbf{R})$ of real-valued continuous functions on [0, 1], show that they have a common zero x_0 in [0, 1] if the ideal generated by them is proper.

Q 8.

Let $\omega = e^{2i\pi/3}$, which is a cube root of unity. Consider the ring homomorphism $\theta : \mathbf{R}[X] \to \mathbf{C}$ which is the eveluation of any polynomial at ω . Prove that Ker θ is the principal ideal $(X^2 + X + 1)$.

Q 9.

If G is a finite group, p is a prime dividing O(G) and R is the group ring $\mathbf{Z}_p[G]$ of G over \mathbf{Z}_p , prove that $(\sum_{g \in G} g)^2 = 0$ in R.